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ABSTRACT

A tool for TCP stack testing and TCP/IP fingerprinting
(a.k.a. OS detection) is introduced. While tools presently
exist to do either OS detection[1, 2] or TCP stack testing[3,
4], the methods they employ are limited by the techniques
and analysis performed, sometimes resulting in incorrect re-
sults or no results at all. We introduce synscan, a tool
whose objective is to fingerprint every aspect of a TCP/IP
implementation. synscan is not meant as a proof-of-concept
tool; rather, it is a robust and useful tool which can be used
in addition to others for TCP/IP stack testing and OS de-
tection. synscan incorporates most of the techiques used
by the existing tools and introduces a number of new ones.
synscan’s primary advantage is that each test begins with a
TCP SYN segment (hence the name) to an open port, giving
it the ability to test and fingerprint even the most fortified
hosts. Conclusive data from large network scans and com-
parisons to results from existing tools are also reported.

1. INTRODUCTION

Since the IP[5] and TCP[6] protocols have become the defini-
tive end-to-end communication protocols for the Internet,
the performance of the Internet depends just as much on
the performance of these two protocols as on the hardware
that carries their payloads. Since its inception in 1981,
many algorithms and enhancements have been devised and
developed to improve its performance. In 1988, Jacobson
introduced the set of algorithms for TCP now commonly
known as Tahoe TCP[7]. 1990 the BSD Reno implementa-
tion added Fast Retransmit and Fast Recovery. 1996 saw the
development of Selective Acknowledgments in [8]. In 1999,
the addition of NewReno[9] saught to improve Reno’s Fast
Recovery algorithm. The timeline also saw the introduction
of window scaling, PAWS and timestamping. Even today,
working charters exist to further refine the algorithms used
by TCP implementations to improve performance in the In-
ternet. All of these changes, refinements and improvements
over the years has led to a very diverse set of TCP imple-
mentations actively used by hosts on the Internet today.

Uncovering the differences in these many TCP implemen-
tations is the primary goal of the new tool introduced in this
paper, synscan. It is a robust tool that combines a number
of different existing analytical methods as well as some newly
discovered ones, providing the user with a wealth of informa-
tion about the TCP implementation analyzed. Additionally,

synscan uses this data to provide a TCP/IP fingerprint and
a guess as to what operating system and version the remote
host might be running.

(Possibly) contrary to popular belief, there are a number
of legitimate reasons why someone would want or need to
know the TCP/IP fingerprint (and hence the operating sys-
tem and possibly version) of a remote host. Many system
administrators manage large networks connected by many
routers, firewalls, VPNs and other devices, with physical
locations spanning offices, cities or even countries. Audit-
ing, managing and enforcing corporate and network policies
is a difficult task. Tools which make scanning network ad-
dresses, performing OS detection, and portscanning of hosts
on the network make this task easier. Another valuable use
for TCP stack fingerprinting is gathering statistical data on
the deployment and distribution of different operating sys-
tems and tcp implementations in the Internet, as done in
[10]. Finally, previous work has shown that is it possible to
resolve network and protocol ambiguities by passive OS fin-
gerprinting[11]. This last reason was the primary motivation
for writing synscan.

The rest of this paper is divided into the following sec-
tions: Section 2 describes in detail the design and architec-
ture of synscan. In section 3, the analysis techniques em-
ployed by synscan are described in detail. Then in section
4, the results of some large network scans and comparisons
to other tools are described. Section 5 discusses possible
countermeasures that could be used to distort or prevent
results, and section 6 goes into current limitiations of the
tool. Section 7 discusses previous research and work. Sec-
tion 8 discusses other ideas that could be implemented, and
finally section 9 offers some concluding remarks.

2. DESIGN

The basic design of synscan is similar to tbit, activemap
(see section 7), sting[4] (and probably many other tools)
whereby it uses a kernel interface to firewall off certain TCP
ports, opens a BPF device to sniff packets off the wire, and
create a basic userland TCP stack to talk to remote hosts.
Events are created both by packets received off the wire,
by packets injected as directed from its configuration files,
and by timers and timeouts also based on the command line
arguments and configuration files. synscan is about 9000
lines of C code.
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2.1 Networking and Portability

synscan uses libdnet[12] for portable networking opera-
tions, such as firewalling ports and sending raw packets. It
uses libevent[13] for portable event handling, and libpcap[14]
for its portable BPF interface to sniff packets.

2.2 Configuration

Rather than have all the tests and test functionality hard-
coded into the tool itself, synscan instead parses them from
configuration files using a simple grammar. This was crucial
to the discovery of many of the implementation differences
discussed below as it allows one to easily add, remove and
change the parameters of given tests.

Two configuration files are used for running tests: syn-
scan.services and synscan.conf. The following two sec-
tions described the configuration grammer are by no means
complete. They are meant to provide the reader with a gen-
eral sense of how configuration is done and what parameters
can be adjusted1.

2.2.1 Service Configuration

To give synscan the ability to speak application-level pro-
tocols, it uses a file synscan.services which allows one to
specify and configure the payloads and states for the type
of service at a given port.

For example, listed below is a configuration for the HTTP
protocol.

service http {

proto tcp;

port 80;

segment {

flags = psh|ack;

outbound;

payload = "GET / HTTP/1.0\r\n";

};

segment {

inbound;

payload = "HTTP/1\.. 200 OK";

};

};

This configuration specifies that a TCP connection made
to port 80 of a host first be sent a TCP segment with the
HTTP “GET” command as its payload with the TCP flags
PUSH and ACK. The second segment specifies that an in-
bound segment is expected with its payload matching the
regular expression “HTTP/1\.. 200 OK ”.

Note that this says nothing about how the TCP session
(connection) is negotiated or how TCP segments are pack-
aged for delivery. This merely configured what data should

1Please refer to the manual page with the distribution for
complete details on how to customize the session and service
configurations.

be sent and received at the application level. Lower level
specifications are described in the next section.

2.2.2 Session Configuration

The file synscan.conf contains directives on how each TCP
session should be run. The configuration can specify a num-
ber of parameters that direct synscan in running the session.
The example below illustrates a simple connection:

session simple {

3whs;

seg = -@0;

close fin;

};

The session listed above named “simple” has three com-
ponents. The directive 3whs tells synscan to properly open
the session with a 3-way handshake. The directive seg =

-@0 tells synscan to send every segment configured for that
service as an entire segment. And finally, close fin tells
synscan to properly close the connection with a 4-way FIN
handshake.

To set TCP options and option parameters, one can use
the synopts and ackopts directives:

session simple_with_tcpopts {

synopts=mss 536 timestamp 1,0 nop nop \

sackok nop nop wscale 4 nop;

3whs;

ackopts=timestamp 1,1 nop nop;

seg = -@0;

close fin;

};

The synopts directive above tells synscan to pack the op-
tions and option parameters after the initial TCP SYN seg-
ment. The ackopts directive tells synscan what options
should be applied to packets where the ACK bit is set.

Packet loss can be simulated using the “drop” directive as
shown below.

session drop_example {

synopts=mss 536 nop;

3whs;

seg = -@0;

drop 5, 8;

close fin;

};

Here, synscan will establish a connection (sending the MSS
TCP option in the initial SYN) using a three-way hand-
shake. Once established, the entire payload of the segment
(configured through the service) is sent to the host. Once
(and if) the host sends a fifth or eighth segment, they are
pretended to be “lost” by sending a duplicate acknowledge-
ment for the 4th and 7th segments. Upon retransmission by
the sender, synscan will then acknowledge them.
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2.3 Run-Time

Once both configuration files have been loaded, synscan en-
ters an event loop, starting each connection in the order they
appear in the configuration and processing the directives
accordingly. synscan will delay opening successive connec-
tions by 100 milliseconds2 so as to not trigger rate-limiting
behavior on the host.

The tool will exit the event loop when either all the ses-
sions terminate properly, the user interrupts the process
with the SIGINT signal, or the global timeout (set on the
command line) is reached.

At this point, synscan enters the analysis phase, described
in the following section, where it tries to infer its behaviors.
Following that, synscan then attempts to match the set of
behaviors and characteristics against a database of known
characteristics.

3. ANALYSIS

Once synscan finishes running all the configured TCP ses-
sions, the results are then analyzed for a number of differ-
ent characteristics. Depending on the types and directives
within the tests run, synscan will try to analyze a number
of different behaviors and values used by the remote host’s
TCP algorithms.

synscan does this analysis by calling a number of ana-
lytical modules passing the results and configuration infor-
mation of each session run. Below, each module will be
described in terms of its input and what characteristics it
can determine.

CC: Congestion Control

Determining the congestion control algorithm used by a
TCP is dependent on observing a number of different events.
The current implementation of synscan is able to replicate
the tests performed by TBIT, discussed in section 7.2. For
services that will send more that 5 kilobytes of data without
special privileges (HTTP, for example), synscan will fake
packet-loss by sending duplicates acknowledgements for cer-
tain packets using the drop directive. Once the host retrans-
mits the “lost” packet, synscan will acknowledge it (along
with other segments above it that have been received).

synscan will first try to detect if the remote host imple-
ments the Fast Retransmit algorithm. If a second packet was
also dropped (as done in TBIT) then synscan will further
try to analyze the behavior to more accurately determine
the congestion control algorithm.

By examining the timing and ordering of packets sent by
the remote host in the face of the “faked” packet loss, the
CC module can make a determination of the congestion con-
trol algorithm: Tahoe, Reno, NewReno, or RenoPlus. More
information on this technique is available in the TBIT pa-

2The time delay between opening successive connections is
configurable via a command line option.

per[10].

CW: Congestion Window

The Congestion Window (cwnd) is the maximum number
of unacknowledged TCP segments a sending TCP can have
on the wire. A TCP is also limited by the size of the reciev-
ers window (rwnd), where the minimum of these two TCP
state variables is the maximum amount of data that can be
in the network.

Specifically, RFC2581[15] states in section 3.1 paragraph
4:

IW, the initial value of cwnd, MUST be less than
or equal to 2*SMSS bytes and MUST NOT be
more than 2 segments. We note that a non-
standard, experimental TCP extension allows that
a TCP MAY use a larger initial window (IW),
as defined in equation 1 [AFP98]: IW = min
(4*SMSS, max (2*SMSS, 4380 bytes)) (1) With
this extension, a TCP sender MAY use a 3 or 4
segment initial window, provided the combined
size of the segments does not exceed 4380 bytes.
We do NOT allow this change as part of the stan-
dard defined by this document. However, we in-
clude discussion of (1) in the remainder of this
document as a guideline for those experimenting
with the change, rather than conforming to the
present standards for TCP congestion control.

One can easily measure the initial value of a TCPs cwnd
by eliciting a TCP payload response and not acknowledging
any data the remote TCP sends. The remote host should
fill the receiver’s window up to the minimum of rwnd and
cwnd and wait for data to be acknowledged. Eventually,
the retransmit timeout will fire and we should see the first
segment resent. The initial value of the cwnd is the number
of segments between the first segment and the retransmit of
the first segment plus one. This has also been done in TBIT.

DF: DF-bit

The IP header contains a bit labeled Don’t Fragment. Senders
can set this bit on an IP packet if they wish that the pay-
load not be fragmented at any point along the path to its
destination. Other tools also check the value of the DF-bit
in response packets.

Beyond testing whether the DF-bit is set on a particular
response, synscan is able to detect other patterns. For ex-
ample, some operating systems echo the value of the DF-bit
in a SYN segment in the SYNACK segment. Other operat-
ing systems, (some versions of SGI IRIX) will only set the
DF-bit if the MSS TCP option is present in the the SYN
segment. During testing, it was also observed that some
systems will always set the DF-bit, but if a SYN reaches it
with a TTL value of one, the reponding SYNACK packet
has a DF-bit value of zero. It is unclear if this is a result
of the network or operating system and is still being looked
into.

FP: Fragment Overlap Policy
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By using the frag directive in a session configuration, synscan
is able to send IP fragments containing different specified
data. For example, here is a configuration which sends frag-
ments in a certain order to see if a host accepts them con-
forming to the BSD reassembly algorithm (Note: This test is
derived from the activemap test using ICMP echo-requests):

session bsd_frag_check {

synopts=mss 512 timestamp 1,0 nop nop \

sackok nop nop;

3whs;

ackopts=timestamp 1,1 nop nop;

maskwidth 8;

frag = 40@0+;

delay 50;

frag = 16@48+ XO;

delay 50;

frag = 24@64+;

delay 50;

frag = 32@24+ XXOO;

delay 50;

frag = 24@64+ XXX;

delay 50;

frag = -@88

policy_name bsd;

close fin;

};

First, we establish a connection, using the 3whs directive,
specifying both the options to append to the SYN segment,
the options to append to further ACK segments. Then, we
send six overlapping fragments, specifying the length and
offset (with len@off), whether to set IP MF with a plus (’+’)
sign, and datamask to use for each fragment whereby an ’X’
means to overwrite data, and an ’O’ means to leave it intact.
the maskwidth field tells synscan to assume each ’X’ and ’O’
should span 8 bytes of the payload. After each fragment is
sent, synscan waits 50 milliseconds before sending another
to try to prevent packet reordering by hardware queueing.
The above example would send out the following fragments
for the given text string (assuming each character is 8 bytes
of data):

string: abcdefghijklmnopqrstuvwxyz

frag 1: abcde

2: Xh

3: ijk

4: XXfg

5: XXX

6: lmnopqrstuvwxyz

A host that reassembles these fragments according to the
BSD algorithm will find a valid TCP checksum and a valid
TCP segment. Other hosts will not.

The Active Mapping work done described in section 7.3
can perform a similar test, however it is limited to ICMP
echo-request packets.

F8: Fragment-length MOD 8 Check

While implementing the above test cases for overlapping
fragments, another caveat of fragment reassembly was dis-
covered. In RFC791[5], there is a parenthetical note in the
description of how a TCP implemention should fragment a
packet.

RFC791, section 2.3 paragraph 13:

To fragment a long internet datagram, an inter-
net protocol module (for example, in a gateway),
creates two new internet datagrams and copies
the contents of the internet header fields from
the long datagram into both new internet head-
ers. The data of the long datagram is divided
into two portions on a 8 octet (64 bit) bound-
ary (the second portion might not be an integral
multiple of 8 octets, but the first must be).

It was found that some TCP implementations interpret
the last statement (in parenthesis) to mean that a fragment
with a length that is not an integral multiple of 8 bytes and
has the IP MF bit set is an invalid fragment and should
be discarded. Other implementations, however, simply crop
the fragment length down to the next integral multiple of 8
bytes and accept it.

For example, a listing below of relatively current linux
kernel source which handles ip reassembly shows that if IP
MF is set (line 364) and the length is not an integral multi-
ple of 8 bytes (line 365), then it is trimmed accordingly (line
366) and passed on for further reassembly:

Linux source:/usr/src/linux-2.4.22/net/ipv4/ip fragment.c
CVS version 1.58.2.1

352 /* Determine the position of this fragment. */

353 end = offset + skb->len - ihl;

354 /* Is this the final fragment? */

355 if ((flags & IP_MF) == 0) {

...

364 } else {

365 if (end&7) {

366 end &= ~7;

367 if (skb->ip_summed !=

CHECKSUM_UNNECESSARY)

368 skb->ip_summed = CHECKSUM_NONE;

369 }

370 if (end > qp->len) {

371 /* Some bits beyond end - corruption. */

372 if (qp->last_in & LAST_IN)

373 goto err;

374 qp->len = end;

375 }

376 }

However, in the FreeBSD kernel source that handles re-
assembly, a fragment with both of these properties (line
709,714) is considered invalid and dropped (line 716):

FreeBSD source:/usr/src/sys/netinet/ip input.c
CVS version: 1.237

4



709 if (ip->ip_off & IP_MF) {

710 /*

711 * Make sure that fragments have a data

length

712 * that’s a non-zero multiple of 8 bytes.

713 */

714 if (ip->ip_len == 0 ||

(ip->ip_len & 0x7) != 0) {

715 ipstat.ips_toosmall++; /* XXX */

716 goto bad;

717 }

718 m->m_flags |= M_FRAG;

719 } else

Other systems were also found to implement one of these
two policies.

FT: FINACK Retransmit Timeout Values

To shut down a TCP connection, the RFC793 specifies a 4-
way closing handshake to properly terminate a connection.
This test involves performing 3 of the 4 steps in the closing
handshake. First, an open connection estabished using a 3-
way handshake, then a FIN segment is sent to shut down the
connection without transmitting any data. The remote host
will acknowledge this FIN, then send a FINACK segment.
synscan, however, emulates a lost packet by not acknowl-
edging the FINACK. Once the host’s FIN RTO is reached,
it will resend the FINACK segment. Eventually, the host
will timeout the connection completely and either send no
further packets, or a RST.

This test was originally devised in Cron-OS[16].

HZ: Timestamp Hertz

The timestamp option defined in RFC1323[17] also defines
a “timestamp clock” that is used by a TCP to update the
values sent in a timestamp header. The RFC only defines
loose requirements for the frequency of the timestamp clock.

nmap also performs this calculation. However, it is only
able to calculate this based on duplicate SYNACK segments.
Some TCP implementations were found to not set the TSval
in the timestamp header in the initial SYNACK segment,
thus preventing measurement. All TCP implementations
that supported the timestamp option did correctly set the
TSval in FINACK segments. A synscan test which uses the
close nolastack directive tells it to measure the timestamp
clock for all observed TCP implementations that implement
RFC1323 extentions.

ID: IP Identification Field

TCP stacks use many different algorithms for setting the
IP ID. The IPID analysis is able to detect many different
observed patterns. Currently, synscan can detect the fol-
lowing methods used to set the IPID:

• I: Incremental - The host always increments the IPID
using a counter global across all connections.
• IC: Incremental Control - The host has separate global

counters for control segments and for payload segments.

• L: Linux - The host sets the IPID to zero on SYNACK
segments, and then uses a per-connection incremental
IPID for data packets with a randomized start.
• R: Random - The IPID is always a randomized value.
• Z: Zero - The host always sets the IPID to zero;

By opening numerous connections and keeping track of the
IPID of each packet, synscan is able to observe these pat-
terns.

MS: Default MSS Value

The default MSS value is the the value assumed to be the
default MSS of the receiver in the absense of seeing an MSS
option on a TCP SYN segment. We can measure this by not
sending the MSS option and observing the maximum size of
segments sent over the connection. However, this test can
only be made over services that will send back more than
one frame of continuous data (e.g. ¿ 1500 bytes). For HTTP,
this is typical, but for other protocols it is more difficult to
get a server to send a large amount of data.

Also note that some systems will filter and drop SYN
segments that do not contain the MSS option in the first
packet. One explanation given to the author is that many
script-kiddie exploits are coded quickly and do not bother
to add the MSS option, thus, an administrator can try to
make the network more secure by filtering SYNs without the
MSS option.

RT: SYNACK Retransmit Timeout Values

To establish a TCP connection, the RFC793 specifies a 3-
way handshake to properly syncronize both ends’ sequence
numbers that will be used to push data across the connec-
tion. First, an connection request is made by sending a
valid TCP SYN segment to an open port on the host. The
host should reply with a SYNACK, and expect to receive
an acknowledgement of its sequence number.

Again, synscan, emulates a lost packet by not acknowl-
edging the SYNACK. Once the host’s SYN RTO is reached,
it will resend the SYNACK segment. Eventually, the host
will timeout the connection completely and either send no
further packets, or a RST.

This test was also originally devised in Cron-OS[16], and is
similar to both the FIN RTO (FT) and payload RTO (PT)
analyses.

PT: Payload Retransmit Timeout Values

In addition to the SYNACK and FINACK retransmit time-
out analysis, synscan can analyze and record the retransmit
timeout values of segments with a data payload.

For this analysis to happen, a test must be configured
to illicit data from a remote host and then not send any
acknowledgements. Eventually, the remote TCP will resend
the initial data segment after the first timeout, and then
(usually) exponentially backoff, resending the segment again
and again until it either terminates the connection with a
reset, or synscan times out and terminates the connection.
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Note that the results found for RT, FT, and PT are hardly
the same across operating systems and provide useful infor-
mation in distinguishing between them.

SN: Initial Sequence Number

The initial sequence number (ISN) is used to syncronize
both ends of a TCP connection with a common value to send
data through the window. Each connection maintained by a
TCP will vary the ISN with either some incremental value,
or some varied source of randomness.

Other work[18] has looked more closely at the types of
randomness used, but such analysis requires hundreds of
thousands of connection samples which is beyond the scope
of this tool.

This analysis is similar to that of nmap.

TL: Default TTL

synscan uses a similar (and widely known) method to trace-

route to determine the default TTL value used by the re-
mote host. TCP packets are sent to the host with each
successive packet, setting the TTL one greater than the pre-
vious, starting at 1. When a response is finally received from
the host, the last TTL value is added to the TTL value that
appeared on the wire in the response packet. This sum is
the value assumed to be the default TTL set by the host.

The directive ttlcheck can be supplied in a session config-
uration and depending where it is located will cause synscan
to invoke this algorithm.

• Before the synopts directive :: Initial SYN segment
• Before the first payload directive :: First payload seg-

ment
• Before the first close directive :: FIN segment

If the directive appears before the synopts directive, it
will use the initial SYN packet; if it appears after synopts

but before any payload directives, it will be invoked on the
first payload packet.

Some operating systems use different default TTLs for
TCP control segments versus segments containing data. synscan
will detect this and output S(ttla,ttlb), where ttla is the
default TTL for control segments, and ttlb is the default
TTL for segments containing data.

TO: TCP Options

As said in [1], “TCP options are a goldmine of informa-
tion”, and synscan tries to mine as much information from
them as possible. The idea here is to observe how a stack
implementation responds to different options’ presense and
values in a TCP SYN segment. The options supported by
synscan are MSS, timestamp, wscale, and SackOK. Given
enough samples, one can observe a number of differences
among TCP implementations.

Once all SYNACK segments are received and analyzed,
synscan outputs a text string representing how the stack

orders, pads, and fills in the values for each option. Left and
right brackets are used to indicate that options are only sent
when requested in the SYN, and for NOP options (padding)
to indicate optional padding bytes. Additionally, parenthe-
sis after options are used to indicate the behavior of the
values within those options.

MSS: The MSS value informs the remote TCP the maxi-
mum size of a segment to send to avoid fragmentation. De-
pending on the value sent and the presence of other options,
we observed the following behaviors:

• mss: The MSS is a constant value mss.

• Emss: The MSS value is always echoed value of the
sent MSS, or mss if no MSS option was sent.

• EM536,mss: The MSS value is echoed value of the sent
if the value sent is greater than the required minimum
536, or mss if no MSS option was sent.

• EMM536,mss: The MSS value is echoed value of the
sent if the value sent is greater than the required min-
imum 536 AND is less than the default mss mss, or
mss if no MSS option was sent.

These values are printed after the option.

Timestamp: Depending on the values sent in the initial
timestamp option, the following behaviors were observed:

• D: The TCP only sends the timestamp option if the
TSval in the initial SYN segment is non-zero. I.e., a
zero TSval disables timestamping.

• N: The TSval and TSecr fields in the SYNACK seg-
ments are always zero regardless of the values sent.

• A: The TSval value is non-zero and the TSecr correctly
echoes the value sent in the SYN segment.

These values are printed after the option.

Window Scale: We observed the following behaviors of the
wscale value:

• scale: The scale value is always a constant scale.

• E: The scale value is always echoed.

Here are some samples of observed hosts given the behaviors
and options ordering described above:

1 M(1460)[[NN]S][[NN]T(D)][NW(0)]

2 M(E)[[NN]S][[NN]T(A)][NW(0)]

3 M(536)[NW(0)][NNT];

4 [M(EM536)][W(0)];

5 [NNT(A)][NW(0)][NNS]M(1460);

6 [NNT(A)][NW(0)][NNS]M(E536);

Note examples 1 and 2 above where the NOP padding sent
with the sack and timestamp options is optional. Example
4 shows a host that only sends the MSS option when re-
quested, while the rest always send the MSS option.

TP: TCP Overlap Policy

Just as different operating systems handle overlapping and
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inconsistent fragments differently, so is the case with TCP
segments. TCP segments sent out of order with overlap-
ping portions are handled differently from system to system.
synscan can test the TCP Overlap Policy by sending TCP
segments both out of order, and with overlapping data. By
masking out certain bytes of the payload, it can create an
invalid segment if it is reassembled incorrectly.

Consider this example: session D10 {

synopts=mss 1460 dfbit;

3whs;

policy_name last;

maskwidth 1;

seg = 6@2 XXXOOO;

delay 500;

seg = -@8;

delay 500;

seg = 5@0 OOOOO;

close fin;

};

This test configuration directs synscan to first open a con-
nection using the 3-way handshake. Then, it sends a TCP
segment 6 bytes long at offset 2, clobbering the first 3 bytes
of that segment, followed by a 500 millisecond delay before
sending a second segment whose length is the remainder of
the payload at offset 8, with the payload intact. Finally,
synscan sends the first 5 bytes of the segment also intact.
If the remote host acknowledges all the data sent, then the
TP modules will report the TCP policy “last”.

WS: Initial Window Size

Both sides of a TCP connection advertise their current win-
dow size in the TCP header. The value represents the size
in bytes of the buffer space the sender has for more data.
Being a 16-bit unsigned value, it has maximum of 65535 and
a minimum of 0 (meaning the sender currently has no buffer
space available).

Some TCP stacks simply set the initial window size to
a constant value representing the buffer size allocated to
each TCP connection. Others, however, use complicated
calculations based upon the presence of TCP options, the
value of those options and other metrics.

synscan is currently able to detect the following observed
behaviors of TCP stacks in the wild:

• win: A constant window where win is the value.

• E: An echoed window.

• T(a,b): A window that is a constant, a, when the
timestamp option is not enabled, and a constant, b,
when it is enabled

• M(min,max,mss): A window that is a multiple be-
tween min and max of the value sent in the MSS op-
tion. If the MSS option is not present, it uses mss.

• MT(min,max,mss): A variation of the above M() ex-
cept that the length of the padded timestamp option
(12 bytes) is subtracted from the given or default MSS
before the multiplication is done.

• MTT(min,max,mss): A variation of MT() where the
subtraction is only done if both the MSS and times-
tamp options are present in the SYN segment.

3.1 Fingerprints

The combined set of output from all of the analytical mod-
ules describes a synscan fingerprint. An example of a fin-
gerprint from the synscan.fingerprints file follows:

fingerprint "OpenBSD 3.3" {

CC=Reno;

CW=2;

DF=0;

F8=Y;

FP=bsd;

FT=0,1,1,1;

HZ=2;

ID=R;

MS=1460;

PT=0,1,1,1;

RT=1,2,4,8;

SN=R;

TL=64;

TP=last;

TO=M(1460)[NNS][NW(0)][NNT(B)];

WS=MTT(11,168,1024);

};

Fingerprints are loaded from this file upon startup, and
when results are received from the analytical modules, each
fingerprint from the file is compared to the one retrieved
from the remote host. The fingerprint with the most match-
ing characteristics is printed upon exiting.

4. TESTS AND RESULTS

After primary development of synscan was complete, exten-
sive tests were conducted to compare the output of synscan
against that of nmap and xprobe2. The latest released ver-
sions of nmap and xprobe2 were used, v.3.48 and v.0.2 re-
spectively.

4.1 Random Web Servers

Using Yahoo!’s random URL service[19], 4516 hosts were
scanned using nmap, xprobe2 and synscan. For all hosts,
the following parameters were passed to each program on
the command line:

nmap -P0 -O -p 21,22,23,25,53,54,80,443 IP

xprobe2 -P -T 21,22,23,25,53,54,80,443 -U 53,54 IP

synscan -g complete -t 60 IP 80

For nmap, the parameter ’-P0’ tells nmap not to send an
initial ICMP echo request to see if the host is up, ’-O’ tells
it to attempt OS fingerprinting, and ’-p ...’ indicates the set
of TCP ports to use. For xprobe2, ’-v’ tells it to be verbose,
’-P’ tells it to enable TCP and UDP protocol scanning, and
’-T ...’ indicates the set of TCP ports to try to connect, and
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Table 1: Total match results for all three tools
percentile # of hosts % of total

nmap matches 2968/4516 65.72%
xprobe matches 3218/4516 71.26%

synscan matches 4504/4516 99.73%

Table 2: Outcomes and percentages of nmap

nmap outcome # / total %
One unique result 2968/4516 65.72%

No exact match 1256/1548 81.1%
Multiple guesses 466/1548 30.1%
Too many matches 78/1548 5.0%

’-U ...’ the set of UDP ports. For synscan, ’-g complete’
tells it to use the complete set of tests, ’-t 60’ sets the global
timeout to 60 seconds, and the ’80’ at the ends tells it to
only scan TCP port 80.

For each host was tested at approximately the same time.
This was done to reduce the chance of one tool successfully
scanning a host, and another scanning the same host at
some later time when it could possibly be down or offline.
To do this, a perl script was written to fetch a random URL,
then three processes were forked off, each executing one of
the tools with the parameters above. The output of each
scan was redirected to a file., Once all hosts were scanned,
the results were correlated and the following statistics were
calculated.

Table 1 shows the results of the 4516 hosts scanned. It
shows that for 65.7% of the hosts, nmap returned a result,
71.2% for xprobe2, and 99.7% for synscan3. It is difficult
to make exact comparisons of these results, and there are
some exceptions to the numbers. One primary difficultly is
categorizing the output of each tool since the output differs
from tool to tool.

Table 2 shows the success of nmap in the first row, and then
distribution of results for the 1548 hosts that nmap could not
classify in one unique result. The majority of those hosts
returned “No exact match”.

While nmap returns one unique result for most of the hosts
scanned, xprobe2 always returns a Primary Guess with a
“Guess Probability”, followed by a user configurable num-
ber of other possible matches and their corresponding guess
probability. Table 3 shows the percentile distribution of the
guess probability for all hosts that xprobe2 was able to make
a guess.

Finally, it should be mentioned that synscan (currently)
will only return one matching OS guess.

Table 4 shows the percentages for which the outcome of
one tool identically matched the outcome of another. So,

3It should be noted that the 12 hosts synscan did not return
results for was because port 80 was closed. This was also
the case for nmap and xprobe2

Table 3: “Guess Probability” distribution for the
“Primary Guess” determined by xprobe2

percentile # of hosts % of total
0-10 0 0.0%

11-20 0 0.0%
21-30 100 3.1%
31-40 16 0.5%
41-50 128 4.0%
51-60 530 16.5%
61-70 533 16.6%
71-80 1692 52.6%
81-90 215 6.7%

91-100 4 0.1%

Table 4: Exact and missed matches between tools
tool output # of matches percentage

nmap=xprobe 1543/2232 69.1%
synscan=nmap 1835/2965 61.9%

synscan=xprobe 1655/3213 51.5%
synscan=xprobe=nmap 1314/2229 59.0%

missed 236/1543 15.3%

out of all the hosts for which both nmap and xprobe2 were
able to make a guess, 69.1% of the guesses matched inden-
tically. synscan matched nmap on 61.9% of the hosts, and
it matched xprobe2 on 51.5% of the hosts. All three tools
had identical matches for 59.0% of the hosts for which all
three hosts returned a guess. Finally, the last row shows
the number of hosts where both nmap and xprobe2 returned
identical guesses (the quotient for the first row of the table),
and synscan returned a completely different guess. This
occurred for 15.3% of those matches, or 5.2% of all hosts
scanned.

One possible explanation for this discrepancy is that since
all of synscan’s tests start with a TCP SYN segment, they
will all pass through a stateful firewall to the host behind it,
and (usually) get replies directly from the host, passing right
out of the firewall unmangled. However, the probe methods
used by both nmap and xprobe2 could easily be returned by
the firewall. In other words, both nmap and xprobe2 were
fingerprinting the firewall (and both were returning identical
guesses for it) while synscan was fingerprinting the actual
host behind the firewall.

Finally, table 5 shows the top 20 OS descriptions returned
for each tool for all 4516 scanned. The lone outlier in this
set is the fifth entry for xprobe2. It shows that 5.4% of its
results were for some model of HP printer! We find it highly
implausible that a webserver indexed by Yahoo!’s search en-
gine would be running on printer software. This is most
likely a bug in the xprobe2 tool.

5. COUNTERACTIVE MEASURES

The more paranoid system administrators have long sought
methods to defeat, confuse, or prevent the cracker under-
world, or even the curious hacker, from successfully finger-
printing their hosts[20]. Those methods will now be de-
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Table 5: Top 20 OS descriptions for each tool
# nmap # (%) xprobe2 # (%) synscan # (%)
1 Linux 2.4,2.5 823 (27.%) Linux 2.4 840 (26.1%) Linux 2.4 1098 (24.4%)
2 MS 95/98/ME,NT/2K/XP 522 (17.%) MS 2000 Server 484 (15.0%) Linux 2.2 824 (18.3%)
3 Linux 2.1,2.2 268 (9.0%) Linux 2.2 242 (7.5%) MS NT/2K/XP 795 (17.7%)
4 FreeBSD 4 265 (8.9%) MS NT 4 Server 208 (6.5%) FreeBSD 5 494 (11.0%)
5 Sun Solaris 8 180 (6.1%) HP JetDirect 173 (5.4%) Sun Solaris 9 282 (6.3%)
6 MS NT/2K/XP 111 (3.7%) HP UX 11.0i 121 (3.8%) MS 2003 .NET 211 (4.7%)
7 Sun Solaris 2,7 109 (3.7%) MS NT 4,98 98 (3.0%) Sun Solaris 8 188 (4.2%)
8 FreeSCO 2.0 100 (3.4%) FreeBSD 4.4 72 (2.2%) FreeBSD 3 179 (4.0%)
9 IBM AIX 4 89 (3.0%) FreeBSD 4.8 71 (2.2%) Sun Solaris 7 100 (2.2%)

10 BSDI BSD/OS 4 42 (1.4%) FreeBSD 4.5 67 (2.1%) BSDI BSD/OS 4 80 (1.8%)
11 FreeBSD 2,3,4 42 (1.4%) Sun Solaris 8 65 (2.0%) Sun Solaris 2 47 (1.0%)
12 MS 2003/.NET 37 (1.2%) MS XP SP1a 61 (1.9%) FreeBSD 4 45 (1.0%)
13 Linux 2.4 37 (1.2%) OpenBSD 3.0 60 (1.9%) IBM AIX 4 41 (0.9%)
14 FreeBSD 2,3,4 28 (0.9%) FreeBSD 4.3 43 (1.3%) Apple Mac OS X 10 30 (0.7%)
15 FreeBSD 4,5 27 (0.9%) Sun Solaris 7 42 (1.3%) Apple Mac OS 7-9 25 (0.6%)
16 Sun Solaris 9 18 (0.6%) Linux 2.0 41 (1.3%) IBM AIX 5 21 (0.5%)
17 Cobalt Linux 2.0, Linux 2.0 15 (0.5%) FreeBSD 2.2 40 (1.2%) SGI IRIX 6 21 (0.5%)
18 MS 2003/.NET,NT/2K/XP 14 (0.5%) FreeBSD 4.1 36 (1.1%) Sun Solaris 8/9 13 (0.3%)
19 Apple Mac OS X 10.1 13 (0.4%) MS 2003 Server 33 (1.0%) OpenBSD 3.3 7 (0.2%)
20 Linux 2.4, Panasonic embed. 12 (0.4%) Sun Solaris 6 31 (1.0%) IBM AIX 3 2 (0.0%)

scribed, as well as methods that might be successful in de-
feating probes by synscan.

5.1 Firewalling

Stateful firewalls and correct firewall rules can be used to
block all TCP traffic for unknown states. This blocks all
nmap scans except ones beginning with a valid TCP SYN
segment. Firewall rules can also be used to block most ICMP
traffic4. While this may have some impact on operations or
network diagnostics, it can be considered an acceptable loss.

IP Personality is a Linux netfilter module that allows one
to configure a host’s firewall ruleset to mangle TCP and
IP packet parameters. For example, here are some of the
possible parameters it can mangle[21]:

• TCP Initial Sequence Number (ISN)

• TCP initial window size

• TCP options (their types, values and order in the packet)

• IP ID numbers

• answers to some pathological TCP packets

• answers to some UDP packets

5.2 Kernel-level parameters

Most unix-like operating systems provide an interface to
change TCP/IP parameters used by the network stack. On
BSD systems, this interface is accessed via the sysctl util-
ity, and some of the applicable parameters (on FreeBSD 5.1)
are under net.inet.tcp.*:

• rfc1323 - high performance TCP extensions

4At the very least, one should allow “ICMP Destination
Unreachable: Needs Fragmentation” to allow hosts running
Path-MTU discovery to work properly

• mssdflt - default receiver MSS
• always keepalive - send TCP keep-alive segments
• keepintvl - interval between keep-alive segments
• sendspace - default initial TCP window size
• delayed ack - use recommended delayed TCP acks.
• slowstart flightsize - initial congestion window (cwnd)

size
• local slowstart flightsize - local initial cwnd size
• newreno - enable TCP NewReno algorithms
• net.inet.ip.ttl - default IP TTL used

The Linux kernel also has changable values for other pa-
rameters under net.ipv4.*:

• tcp dsack
• tcp fack
• tcp fin timeout
• tcp synack retries
• tcp syn retries
• tcp retries2
• tcp retries1
• tcp keepalive intvl
• tcp keepalive probes
• tcp keepalive time
• tcp retrans collapse
• tcp sack
• tcp window scaling
• tcp timestamps

5.3 Scrubbing

While the above parameters can be used to adjust some of
the time-related tests, packet scrubbing in a firewall, such as
OpenBSD’s pf, can be used to prevent overlapping IP frag-
ments and possibly TCP segments from entering a host or
network. (...More description of pf/other scrubbers here...)
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6. LIMITATIONS

Right now, the main limitation to synscan is its utter lack
of intelligence in detecting and dealing with true packet loss.
While not all of the analytical techniques suffer from packet
loss, the ones which rely on specific timing of the hosts TCP
stack will produce incorrect results.

Other areas that might be problematic for synscan are
packet reordering, dynamic routes, asymmetric routes, or
large variations in the route-trip time (RTT) to and from
the host being scanned.

And, of course, synscan requires at least one open TCP
port (and preferably one that will send data, or at least
not immediately close the connection) to perform any of its
tests. Therefore, it is unable to do any scanning of client
machines with synscan, whereas other tools may be able
to if the host responds to ICMP traffic or abnormal TCP
packets.

7. RELATED WORK

TCP testing and OS fingerprinting are not new. Here, some
of the most common projects which perform TCP testing
or OS detection are highlighted. While this section on re-
lated work may not be complete, synscan has been inspired
primarily by the work and tools described here.

7.1 NMAP

The nmap tool is well regarded as the swiss army knife of
network-scanning[1]. Beyond its capability to do port scans
of large networks, scans by a number of different methods,
and application version checking among many other things,
it can also do OS detection.

nmap’s OS detection uses a number of analytical tech-
niques to perform OS detection:

• TCP ISN algorithm prediction

• TCP timestamp hertz calculation

• IP header IPID field algorithm prediction

In addition to these calculations, nmap also sends a number
of packets to the host and records the values in the responses.
These test packets (referred to as T1-T7,PU by nmap) are:

• T1: send a TCP SYN packet with TCP options to
open port
– expect a SYN—ACK packet

• T2: send a TCP NULL packet w/options to open port
– expect a RST or no response

• T3: send a TCP SYN—FIN—URG—PSH packet with
TCP options to open port
– expect a RST or no response

• T4: send a TCP ACK to open port with TCP options
– expect a RST or no response

• T5: send a TCP SYN to closed port with TCP options
– expect a RST

• T6: send a TCP ACK to closed port with TCP options
– expect a RST

• T7: send a TCP FIN—PSH—URG packet to a closed
port with TCP options
– expect a RST

• PU: send a UDP packet to a closed port
– expect an ICMP port unreachable message

Once results have been obtained for all the tests, nmap

tries to match the results against a database of known results
for different operating systems and versions. nmap reports
the entry with matching results, and in the case of a tie
or multiple ties, it will report all entries. If not enough
responses have been received by nmap it will try to guess or
fail.

7.2 TBIT

Researchers at ACIRI developed the TBIT test tool and
used it to determine which TCP implementation a variety
of web hosts on the Internet employed[3]. TBIT was able to
detect the Tahoe, Reno and NewReno TCP implementations
and a NewReno variant they called “RenoPlus”. It was
developed on a Linux 2.0 (using the ipfw firewall interface)
platform, and at the time of this writing is not presently
maintained.

TBIT uses a userland TCP stack, connects to a web-
server using a 3-way handshake, sends a “GET / HTTP/1.0”
HTTP request string, and simulates “dropping” packets from
the HTTP response by sending duplicate ACKs. Depend-
ing on the response from the webserver, TBIT is able to
categorize the TCP implementation.

The TBIT project had five main goals: To determine
whether Internet simulations based on Reno are appropri-
ate; to determine common configurable values used by hosts,
such as the Initial Congestion Window (ICW); the deter-
mine how widely deployed end-to-end congestion control is
in the Internet; to determine TCP implementation correct-
ness (find bugs); and to determine the effectiveness of ECN
in the wild.

7.3 Active Mapping

In the field of intrusion detection, work has shown how both
the IP and TCP protocols are vulnerable to evasion from
network intrusion detection systems (NIDS)[22].

To counter this vulnerability, one can use a tool, called
an Active Mapper, to assess how the hosts on a network
resolve those ambiguities, and then feed that information
into a NIDS so it knows the resolution policies of all the
hosts on the network[23]. Listed below are the checks the
tool makes.

• Hop count to the host

• Path-MTU to the host

• IP fragment reassembly policy

• TCP segment reassembly policy

• TCP RESET acceptance policy

10



The two interesting checks are IP fragment reassembly and
TCP segment reassembly policies. The research reported
finding multiple IP fragment reassembly policies (BSD, BSD-
right, linux, first and last), and also reported on observed
TCP segment reassembly policies in the wild.

7.4 Xprobe2

Xprobe2 is an active OS fingerprinting tool that primarily
uses data from ICMP response packets to identify different
operating system implementations.

• ICMP Echo request soliciting an ICMP Echo response.

• ICMP Timestamp request soliciting an ICMP Times-
tamp response.

• ICMP Address Mask request soliciting an ICMP Ad-
dress Mask response.

• ICMP Info request soliciting an ICMP Info response.

• UDP packet to closed UDP port soliciting an ICMP
Port Unreachable response.

A recent version also has the capability to check various
fields from a TCP SYNACK reply from an open TCP port.

7.5 Cron-OS

Cron-OS, formerly known as RINGv2, is a patched version
of nmap to measure TCP retransmit timeouts (RTOs)[16].
Patches were then made to nmap’s fingerprint file containing
results of their tests.

Cron-OS has the ability to measure two different TCP
RTOs: the SYNACK RTO and the FINACK RTO.

7.6 Passive OS Detection

In addition to these active TCP testing and active stack
fingerprinting tools, there also exist passive tools to analyze
network traffic and infer TCP behavior, characteristics, or
OS information.

One such tool is p0f[24]. p0f is able to perform OS de-
tection by sniffing TCP SYN and SYNACK packets off of a
network wire (through bpf) and examining the header val-
ues. These values (DF bit value, TCP window size, TCP op-
tions, TTL value, MSS TCP option value, etc.) are matched
against a database containing value for common operating
systems.

This concept can also be applied to network intrusion de-
tection systems (NIDS). As done in [11], a database can
be built matching TCP/IP values used in p0f to operat-
ing system descriptions. Then, using active mapping tools,
described above, and OS detection tools, the ambiguity res-
olution policies are added to the database. Then, as a NIDS
sniffs a TCP 3-way handshake, the ambiguity resolution
policies for both hosts are also known, and any ambiguity
the NIDS might see can be resolved correctly.

Another tool is tcpanaly[25], that does off-line analysis of
packet capture files to infer TCP behavior and correctness.

tcpanaly is able to measure a number of different charac-
teristics from both the sender’s and receiver’s perspective,
such as if normal ACKing or stretch ACKing is employed,
the initial value of the congestion window (cwnd) of the
sender, the retransmit timeout value or an implementation
of fast retransmit, among other datapoints. The main mo-
tivation of tcpanaly was to analyze different TCP traces to
find bugs or anamalous behavior.

8. FUTURE WORK

While synscan performs quite extensive analysis of TCP
parameters, there are many more pieces of information it
could measure. For example, more detailed examination
of how a TCP manages it congestion window in the face of
packet-loss. As asked in TBIT, does a TCP correctly reduce
its congestion window (cwnd) by half when it detects a lost
packet? There are other questions pertaining to congestion
control and RFC adherance that synscan could also attempt
to answer. However, the problem of dealing with real packet
loss must first be addressed before trying to answer such
questions in a consistent way.

synscan currently does not implement the TCP RESET
acceptance policy checks as the active mapper tool does, de-
scribed in section 7.3. This would be another useful metric.

The payload division algorithm is also a metric synscan

could use to distinguish hosts. This is the method used to
partition large amounts of data into segments that fill the re-
ceiver’s MSS. Consider a web server that returns 1018 bytes
for a “GET / HTTP/1.0” request (usually in one write()

system call to the socket). If synscan sends an advertised
MSS of 100 bytes, some TCP stacks will send ten 100-byte
segments and one 18-byte segment; others will send one 18-
byte segment first, then 10 100-byte segments; while others
use different procedures to move the data.

Idle connections are usually preserved on sockets when
they have been told to stay alive by the program. However,
some operating systems aren’t careful about when they actu-
ally send keep-alive TCP segments. During the development
and testing of the retransmit timeout analysis code for un-
acknowledged TCP data, it was observed that some systems
will send TCP keep-alive probes every 75 seconds, in addi-
tion to retransmitting the unacknowledged segments. It is
possible for synscan to also observe and report this type of
behavior.

9. CONCLUSION

This paper introduces a new TCP stack testing and finger-
printing tool, synscan, which combines a number of new
and old techniques to analyze TCP behavior and provide a
TCP/IP fingerprint. The main advantage synscan presently
has over other tools is its methods for obtaining specific im-
plementation information all come though “normal” TCP
client connections.

synscan has been demonstrated as a successful OS finger-
printer against other main tools currently being used today.
Large scans of hosts on the Internet were performed and
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their results shed some light on the status of the ability to
OS fingerprint hosts on the Internet.

Finally, we hope that the information given on counter-
measures to the techniques provided by this tool will possi-
bly aid the more paranoid members of the Internet commu-
nity.
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